Design of an Active Suspension System for Passenger Vehicles

Presented By:

Michael Aeberhard
Jean Pechambert

ME 6105 - Dr. Chris Paredis
April 22nd, 2009
System Overview

- **Goal:** Improve the comfort and performance of the vehicle
 - Reduce the effect of the road on the vehicle chassis
 - Introduce active suspension systems on cheaper vehicles

- **How this is accomplished**
 - Sensors
 - Variable dampers
 - Hydraulic servomechanisms
 - Computer control unit
Initial Design Tasks

- Fundamental Objective
 - Maximize the performance and comfort of the vehicle

Maximize performance and comfort

- Maximize Handling
 - Acceleration
 - Braking
 - Steady
 - Cornering

- Compensate for the effects of the road

- Maximize Ergonomics
 - Highway
 - City
 - Country
 - Off-Road
Design Alternatives

- Types of vehicle suspension systems
 - Leaf suspension
 - Spring + damper suspension

- Types of active suspension system
 - Active
 - Variable damper and hydraulic servos
 - Semi-Active
 - Variable damper only
Design Overview

- Car Location
- Wheelbase
- Weight Distribution
- Axle Length
- Car Speed
- Car Direction

Maximize Performance and Comfort

- Maximum Roll
- Maximum Pitch
- Suspension Displacement
- Price
- Transient Response Time

- Range for Dampening Coefficient
- Spring Coefficient
- Algorithm
Energy-Based Model

- Decisions made to simplify the problem
 - Consider only one road surface
 - Model only front independent suspension
 - Model only one type of suspension geometry

- Components to Model
 - Suspension geometry
 - Vehicle frame
 - Suspension test rig
Energy-Based Model
Energy-Based Model
Energy-Based Model
Energy-Based Model

Basic Suspension Results

Semi-Active Suspension Results
Uncertainty Modeling

- **Design Variables**
 - Spring Constant
 - Feedback Gain
 - Suspension Arm Length
 - Suspension Arm Angle

- **Uncertain Variables**
 - Frame Mass
 - Frame Length
 - Road Conditions
Uncertainty Modeling
Monte Carlo and LHS Simulations

Monte Carlo
Mean: 3.913 m/s
Std. Dev.: 0.616

LHS
Mean: 4.082 m/s
Std. Dev.: 0.581

350 runs & 200 runs
Preference Modeling

- Two attributes considered
 - Cost (€)
 - Performance (in terms of average frame velocity)
Optimization
Conclusion

- **Problems**
 - Dymola and ModelCenter learning curve
 - Experience with Feedback Control
 - Comprehension of Uncertainty and Preference Modeling

- **Design Revisited**
 - Transient time as an attribute
 - Allocate more time (and resources) to run simulations

- **Improvements**
 - Model different suspension geometries
 - Impact of different roads
 - 4-wheel system (pitch and roll of vehicle)